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Detailed Methods

Calculations were performed in Excel to examine the strains that are achievable in each configuration, 
making the simplest possible estimates.  

2MM Configuration

The initial uninflated volumes of the actuator Vai and reservoir Vri were taken as that of cylinders,
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where the Ri are the initial radii and the Li the initial lengths.  This corresponds to both bladders being 
maximally filled without overpressure.  

In long actuators, the McKibben muscle can be treated as maintaining a cylindrical shape, and the 
conical ends handled with an empirical fudge factor that corrects the strain [5].  However, in the 
configurations examined here, we were primarily concerned with strain, which requires short actuators, 
as shown below.  Therefore, the inflated volume of the actuator was treated as a barrel whose volume 
was estimated as the weighted average of two cylinders of radius Rai and Rai+Ra:
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For a given lengthwise perimeter P, the actuator volume reaches a maximum, limiting the strain.  

Likewise, the deflated volume of the reservoir bladder was set by subtracting the volume of fluid 
entering the actuator, with the shape being treated as an inward-bending barrel:  
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The volume is a minimum when the walls of the bladder touch in the center, Rri = Ri.  This will also limit 
the strain.

The general approach taken in these calculations was to systematically reduce the actuator length La and 
at each step calculate the change in actuator radius Ra based on the assumption of a constant 
lengthwise actuator perimeter P (given a non-stretchable sleeve [5]), then calculate the volume of the 
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actuator to find V.  From the change in reservoir volume, the change in its radius was next determined, 
which was straightforward because its length was constant.  

In its initial state, with no bulging, the length P of the actuator sleeve (Figure 2 of the main text) is

(4) P = 2Lai ,

where Lai is half the actuator length.  For this calculation, the shape of the bulge is approximated as that 
of an ellipse.  The method of obtaining Ra as the tube begins to bulge is less straightforward than one 
would like.  The perimeter of an ellipse must be approximated, but the most accurate expression 
contains cross-terms and is not amenable to determining an unknown radius from a known perimeter.  
The simplest estimate for the perimeter is 
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which would give for the bulge radius Ra, using half the ellipse perimeter,
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However, this expression is inaccurate for flattened ellipses – the case at the beginning when the 
tubular actuator begins to bulge – and does not yield any value when the ratio of a:b exceeds 9:1 since 
the square root is negative.  Therefore, at low inflation the radius was assumed to increase as the 
square root of L times a factor f, where f was chosen case-by-case for a smooth transition between the 
two expressions.  The calculated radius as a function of actuator length is shown in Figure 1 for 

, the estimate of equation (6), and a curve that switches from the former to the latter at L = aR f L  

0.75, when equation (6) gives a reasonable estimate.

Figure 1.  Estimated radius of ellipse based on equation (6) (blue),  (black), and a switch from R L 
the latter to the former (red).    
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The system was subject to several constraints.  The length of actuator must stay above zero; the volume 
of actuator must continue to increase as its length contracts; the reservoir volume cannot go below 
zero; and the reservoir walls cannot touch (pinching off the fluid flow).  

The connector and pump lengths were neglected, although this appreciably overestimates the strain.  
The assumption of a constant length P also leads to inaccuracies in the predicted strain, since typical 
sleeve weaves have fibers that cross at an angle.  Given the assumptions and estimates, the results 
presented here are qualitative and best-case.

MM-CT Configuration

The actuator piece of the calculations for the MM-CT were handled the same way as above.  The 
concertinaed tube was treated as a series of n identical segments having the shapes of truncated cones, 
for which the volume is:
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where h is the truncated cone height and the ri are the radius at the top and bottom.  Therefore, the 
volume of the reservoir is:
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where Ln is segment length and r is the smaller radius.  The Ln of the two outermost segments were the 
same as for the other segments, so the larger radius was always Rri.  This geometry requires an even 
number of segments.  The concertinaed walls make an angle  from their original horizontal position 
when they fold.  Half the folded reservoir length is thus:

(9) Lr = Lricos = (nLn/2)cos.

The segment length Ln must be less than Rri in order to avoid the two walls touching when they fold; it 
was set to 0.9Rri.  The small radius was then

(10) r = Rri - Lnsin = Rri(1 – 0.9sin

The maximum bending angle was taken as 75°.  Given a maximum V for the actuator, the optimal value 
for the initial reservoir volume is then just slightly larger than V.  To find the maximum strain, the 
difference in extended and folded volumes was set to equal the change in volume of the actuator for 
various combinations of initial reservoir lengths and radii, choosing values to give n even.

Further Results

2MM Configuration

Strain in the 2MM system is shown as a function of decreasing La (corresponding to increasing Va) in 
Figure 2 for two different initial reservoir lengths Lri.  
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Figure 2.  Example curves for the baseline case illustrated in Figure 2 of the main text.  Note the 
reversal of the x-axis because increasing actuator volume Va (black curve) corresponds to decreasing 
La.  a) The separation of the reservoir walls, Rri - Ri (blue), decreases with decreasing actuator length.  
Fluid is taken to stop pumping when this pinched-off condition occurs, even though there is still some 
fluid in the reservoir, limiting the strain (red).  b) For larger reservoirs, strain is limited by the actuator 
becoming maximally filled with fluid (red).  (The discontinuity in the curvature of Va is due to the 
correction of Figure 1.)    

Strain in the 2MM system as a function of reservoir length Lr for one reservoir versus two reservoirs of 
half the length.

Figure 3.  Maximum strain as a function of total reservoir length for one versus  two reservoirs.  


